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We theoretically and experimentally investigate the settling velocity and deformation
of a leaky dielectric liquid drop in a second leaky dielectric liquid subject to a uniform
electric field, E. Both shape distortion and charge convection, when coupled with the
asymmetric velocity profiles, will produce a net drag and a shift in the settling speed.
Perturbation methods for small shape distortion and small charge convection are used
to solve the problem. Corrections to the settling velocity from both contributions are
combined linearly at the lowest order, and show a dependence on the drop size. The
shape distortion due to charge convection is known to be asymmetric. Experiments are
performed to measure the settling velocity and deformation of phenylmethylsiloxane-
dimethylsiloxane (PMM) drops in castor oil. The experimental results are in qualitative
agreement with the theory: the symmetric and asymmetric deformations and the
change in settling velocity are all proportional to E2, as predicted, and the settling
speed shows the correct trends with drop size. Quantitative agreement is lacking,
presumably due to the imprecision of the fluid properties, but the theory can fit all
the data with reasonable choices for these properties.

1. Introduction
It is well known that liquid drops will be deformed when subjected to an external

electric field. Taylor (1966) proposed an electrohydrodynamic theory based on a few
assumptions: a neutrally buoyant drop, a quasi-static electric field, leaky dielectric
fluids, weak deformation and no charge convection. There is no free bulk charge, but
a small but finite conductivity coupled with a difference of dielectric constant and
polarization allows charge to accumulate at the interface, so Taylor’s theory is also
called the ‘leaky dielectric’ model (Saville 1997). This accumulation of charge produces
a non-zero tangential electric stress which drives a fluid motion and produces both
tangential and normal hydrodynamic stresses. Shape deformation can be calculated
as a perturbation from sphericity by balancing the normal electric and hydrodynamic
stresses with the capillary pressure. Taylor’s theory is in good qualitative agreement
with the experimental results in predicting whether the deformation is prolate or
oblate; however, Torza, Cox & Mason (1971) reported quantitative discrepancies
between Taylor’s theory and their extensive experimental measurements. Drops were
found to be more deformed than the theoretical prediction for both prolate and
oblate deformations. For prolate deformation, the deformation measurements are 2
to 4 times greater, and for the oblate case, 1 to 2 times greater than the theoretical
predictions. Ajayi (1978) took into account higher-order terms in the shape distortion
and predicted increased deformations for some of the fluid pairs of Torza et al., but
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this higher-order theory is insufficient to remove the discrepancy. Vizika & Saville
(1992) carried out further experiments in which all the electrical properties of the
liquids were measured. The drops were still found to be more deformed for prolate
systems, but with better agreement with the theory, while the measurements for oblate
systems were lower than the theoretical predictions. Feng (1999) computationally
calculated deformation with the consideration of charge convection, and found
that charge convection tends to enhance the prolate deformation and reduce the
oblate deformation. These results help to explain Vizika & Saville’s experimental
measurements to some extent; however, Feng did not make a quantitative comparison
because Vizika & Saville (1992) only provided the ratios of conductivity in their paper.
In summary, although the basic phenomena are captured by the leaky dielectric model,
there is still a lack of quantitative agreement between the theory and experiments;
but as mentioned above, the theoretical calculations by Ajayi (1978) and Feng (1999)
help to reduce the divergence to some extent. As we will see, this qualitative (but not
quantitative) success of the theory will extend to our results as well.

For stationary drops with charge convection, the tangential electric stress is still
antisymmetric with respect to the equatorial plane normal to the electric field.
Therefore there is no drag for such neutrally buoyant drops, and the deformation
remains symmetric. For translating drops, however, charge convection due to the
asymmetric velocity breaks the antisymmetry of the electric stress and induces a net
drag, and the deformation is no longer symmetric. Spertell & Saville (1976) took
charge convection into account and theoretically calculated both shape distortion
and the correction to the settling velocity of spherical drops in an electric field by
perturbation theory for weak convection. We discuss their results in more detail
below.

Settling velocity, shape distortion and charge convection are all coupled, i.e. one
influences the other. Without charge convection, the electric and flow fields are coupled
through the shape distortion. For drops undergoing translation, the asymmetric
velocity and the shape distortion, acting together, produce a net drag and a shift in
the settling speed. Therefore considering a settling drop in an electric field, by pursuing
a perturbation analysis similar in spirit to that of Ajayi, we can calculate the correction
to the settling velocity owing to shape distortion. On the other hand, when charge
convection cannot be neglected, the electric and flow fields are additionally coupled
through convection. There is also a shift in the settling speed even for spherical drops,
and the deformation is altered by charge convection to be asymmetric: these two
effects were the primary predictions of Spertell & Saville (1976).

The objective of this work is to study the coupling of settling velocity, shape
distortion and charge convection theoretically and experimentally. Until now there is
no experimental study of the settling velocity and deformation of a settling drop in
an electric field. In fact, in order to avoid settling, previous experiments dealt with
nearly isopicnic fluid pairs. Great efforts were made to mix fluids or find fluid pairs
of similar densities; but there still exist some small density differences in many fluid
pairs, as in Torza et al. (1971), where the typical density difference was 40 kg m−3.
Therefore, they had to make the drop sizes small (seldom greater than 1 mm) to avoid
settling, and this incurs a greater error in measurement. Since we expect settling drops
to occur more commonly in applications, it is useful to extend the theory by the
consideration of a mean settling velocity.

The problem is formulated with all assumptions and boundary conditions in § 2.
In § 3, we present the solution procedure and results of the perturbation analysis for
small shape distortion and recapitulate the calculation of Spertell & Saville (1976) for
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Figure 1. Schematic diagram of a translating drop in a uniform electric field.

weak charge convection, but in a more direct fashion than in their original exposition.
In § 4, we discuss the experimental procedures and results of deformation and settling
velocity measurement, and concluding remarks are made in § 5.

2. Problem formulation
We consider a leaky dielectric liquid drop suspended in a uniform flow of a second

leaky dielectric fluid and subjected to a uniform external electric field as shown in
figure 1. We denote the fluid viscosity, conductivity, dielectric constant and density
by µ, σ , ε and ρ, and use a tilde to identify the drop phase. γ denotes the interfacial
tension, U the velocity at infinity, E the electric field strength, and a the undeformed
drop radius. r , θ are the radial and angular coordinates components in a spherical
coordinate system whose origin is at the centre of the undeformed drop. The shape of
the drop is taken to be axisymmetric, so there is no ϕ dependence. The deformed drop
surface can be expressed as the dimensional radial position as a function of the azi-
muthal angle as r = a(1 + ζ (θ)), where ζ (θ) is to be calculated as part of the solution.

2.1. Scaling and dimensionless parameters

We scale length by the radius of the undeformed drop a, and the surface charge by
εε0E. There are two possible velocity scales: the electrohydrodynamic velocity and
the settling velocity U . These two scales are driven by two independent and equally
important mechanisms, the first of which is due to the applied external electric field E,
while the second arises from the density difference between the drop and continuous
phases. In like manner, there are two possible stress scales: an electric stress εε0E

2 and
a viscous stress µU/a. In this analysis, we choose U as the velocity scale because it is
more convenient when we calculate the correction to the settling velocity, and corres-
pondingly we choose the viscous stress as the stress scale. In the electric part of the
problem we use the electric field intensity at infinity E to scale the electric field, and in
this way we keep εε0E

2 as the scale for the electric stress. The dimensionless parameter

W =
aεε0E

2

µU
, (1)
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gives the relative strength of these two stresses. Other important dimensionless
numbers are:

Re =
ρUa

µ
, Ca =

µU

γ
, ReE =

εε0U

aσ
, λ=

ρ̃

ρ
, R =

σ

σ̃
, M =

µ̃

µ
, Q =

ε̃

ε
. (2)

The Reynolds number Re represents the relative strength of inertial force and viscous
force, the capillary number Ca is the ratio of viscous forces to capillary forces, and
the electric Reynolds number ReE is the ratio of charge relaxation time εε0/σ to the
flow time a/U . CaE =CaW is the electric capillary number which gives the relative
strength of the electric stress to that due to interfacial tension and curvature. Only
two of the set of (CaE , Ca, W ) are independent.

2.2. Governing equations and boundary conditions

We take the electric field to be quasi-static and determined in the usual way from
a potential as E = −∇Φ . The electric potentials, outside and inside the drop, Φ, Φ̃,

satisfy Laplace’s equation, the solutions of which can be expressed as:

Φ =

∞∑
n=0

(
anr

n + bnr
−(n+1)

)
Pn(η), (3a)

Φ̃ =

∞∑
n=0

(
ãnr

n + b̃nr
−(n+1)

)
Pn(η), (3b)

in which η = cos θ , Pn(η) is the nth order Legendre polynomial, and an, bn and ãn, b̃n

are unknown constants that must be determined.
Boundary conditions for the electric field are:

e1 the electric field is uniform at infinity;
e2 inside the drop the electric fields are bounded;

and at the interface:
e3 the tangential components of the electric field are continuous;
e4 charge convection balances charge conduction.

The first two boundary conditions e1 and e2 imply that some of the constants in (3)
are zero: (4) gives the simplified expressions that satisfy these conditions.

Φ = −rP1(η) +

∞∑
n=1

bnr
−(n+1)Pn(η), (4a)

Φ̃ =

∞∑
n=1

ãnr
nPn(η). (4b)

Here bn and ãn are to be determined through the remaining boundary conditions.
In this study, the Reynolds number is assumed to be small, so inertial terms can be

neglected in the momentum equation, and the flow is a Stokes flow. The associated
streamfunctions Ψ ,Ψ̃ satisfy:

E4Ψ = 0, E4Ψ̃ = 0. (5)

The general solutions to (5) have the form of (Leal 1992):

Ψ =

∞∑
n=1

(Anr
n+3 + Bnr

n+1 + Cnr
2−n + Dnr

−n)Qn(η), (6a)

Ψ̃ =

∞∑
n=1

(Ãnr
n+3 + B̃nr

n+1 + C̃nr
2−n + D̃nr

−n)Qn(η). (6b)
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Here, Qn(η) is the nth order Gegenbauer polynomial, and An, Bn, Cn Dn and Ãn,
B̃n, C̃n, D̃n are unknown constants that will be determined by applying boundary
conditions.
Boundary conditions for the hydrodynamic problem are:

f 1 uniform flow at infinity;
f 2 inside of the drop the velocities are bounded;

and at the interface:
f 3 the normal velocities are zero;
f 4 the tangential velocities are continuous;
f 5 the tangential viscous stresses are balanced with the electrical stresses;
f 6 the jump in total normal stress is balanced by that due to interfacial tension.

By applying the first two boundary conditions f 1 and f 2, equation (6) can be
simplified as:

Ψ = r2Q1(η) +

∞∑
n=1

(Cnr
2−n + Dnr

−n)Qn(η), (7a)

Ψ̃ =

∞∑
n=1

(Ãnr
n+3 + B̃nr

n+1)Qn(η), (7b)

thus reducing the number of constants remaining to be determined through the
remaining boundary conditions.

2.3. Coupling between electric and flow fields

In the following equations T represents the stress tensor, with subscripts t and n for
tangential and normal components, subscripts H and E for the hydrodynamic and
electric Maxwell stresses respectively, and [[ · ]] denotes a jump across the drop surface,
i.e. [[a]] = a − ã. All the variables and parameters are dimensionless. The Maxwell
stresses are given by:

[[(Tn)E]] = 1
2

[[
κ
(
E2

n − E2
t

)]]
, (8a)

[[(Tt )E]] = [[κEtEn]], (8b)

where κ = 1 on the medium phase side of the interface, and κ̃ = Q on the drop phase
side. There are more complicated but standard expressions for the hydrodynamic
stresses, which we do not write down.

The electric and flow fields are coupled through the three most important boundary
conditions that hold at the interface, which in the dimensionless scaled coordinates is
now at r = 1 + ς(θ).
Tangential electric stress drives the fluid motion (boundary condition f 5):

W [[(Tt )E]] + [[(Tt )H ]] = 0. (9)

The electric and hydrodynamic stress jumps involve the property ratios R and M in
algebraically complicated but known ways.
The electric and flow fields determine the shape (boundary condition f 6):

W [[(Tn)E]] + [[(Tn)H ]] = Ca−1
(
ρ−1

1 + ρ−1
2

)
, (10)

where ρ1 and ρ2 are the two principal radii of curvature of the drop surface.
Deformation is calculated by balancing the electric and viscous normal stress with
interfacial tension, whereas shape distortion also affects the electric and flow fields.
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Electric and flow fields are coupled through charge convection (boundary condition
e4):

[[βEn]] = −ReE∇s · (qVs), (11)

where β = R on the medium phase side of the interface, and β̃ = 1 on the drop phase
side. ∇s · ( ) is the surface divergence, and V s the dimensionless surface velocity. The
surface charge distribution in (11) is given by:

q = [[κEn]]. (12)

From (11), it is obvious that the importance of charge convection is measured by the
electric Reynolds number ReE . When ReE is small, the right-hand side of (11) can be
neglected, that is, the effect of charge convection can be neglected.

3. Solution procedure and results
The theoretical prediction of the shift in settling velocity is divided essentially into

two parts. In the first part, we compute the shift due to shape deformation by small
deformation theory. In the second part, we solve the problem for the shift due to
charge convection for a spherical drop by perturbation in ReE . Although this latter
problem is identical to that solved by Spertell & Saville (1976), we obtain their results
in a direct fashion. Finally, the two corrections are combined and the implications
for experiments are discussed.

3.1. Solution and results considering shape distortion only

In this section, we assume there is no charge convection, and study the coupling of
shape distortion and settling velocity. As we described in § 1, for drops undergoing
translation, the asymmetric settling velocity coupled with shape distortion breaks the
symmetry of the flow field and produces a net drag and a correction to the settling
velocity. We employ an analysis similar to that of Taylor (1966) and Ajayi (1978) by
assuming the electric capillary number CaE is small.

The drop surface can be expressed in general in a Legendre series:

r = 1 + ς(η) = 1 +

∞∑
n=0

ωnPn(η), (13)

where the ωn determine the shape distortion. The ωn are taken to be small and are
related to the physical parameters of the problem through the interfacial boundary
conditions. For small deformation, the curvature in (10) can be expressed as (Landau
& Lifshitz 1959):

ρ−1
1 + ρ−1

2 = 2 − 2ς − d

dη

{
(1 − η2)

dς

dη

}
. (14)

In the following expressions, the superscript represents the order of the perturbation.
The zero-order (spherical drop) solution is a combination of Hadamard–Rybczynski
and Taylor circulations.

Ψ (0) =

(
r2 − 3M + 2

2(M + 1)
r +

M

2(M + 1)
r−1

)
Q1 + 2VE(1 − r−2)Q2, (15)

Ψ̃ (0) =
1

2(M + 1)
(r4 − r2)Q1 + 2VE(r5 − r3)Q2, (16)
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(b)(a)

Figure 2. Schematic diagram of streamlines inside (a) a spherical drop; (b) a deformed drop.

where

VE = − 9R(1 − RQ)

10(M + 1)(2R + 1)2
W (17)

is the dimensionless maximum velocity at the interface and appears as a key parameter
in other analyses of drops in electric fields (Chang, Carleson & Berg 1981; Ward &
Homsy 2001, 2003).

The first-order shape distortion is determined by the zero-order electrical and
viscous normal stresses. Substituting the zero-order solutions into the boundary
condition of normal stress balance (equation (10)), we find the only Legendre
polynomial required in (13) is P2, and the first-order shape distortion is that calculated
by Taylor (1966):

ω
(1)
2 =

9CaE

4(2R + 1)2

[
1
3
(1 + R2 − 2QR2) +

R(1 − QR)(2 + 3M)

5(M + 1)

]
. (18)

From the analysis of Taylor & Acrivos (1964), a uniform flow will not alter the shape
of the drop in a Stokes flow, so the deformation is caused entirely by the electric
stress.

Figure 2 gives the schematic diagram of the streamlines inside a spherical and
deformed drop. At zero order (spherical drop), for given fluid properties and W

(equivalently VE), the flow is given by (15) and (16). The shape distortion will affect
the electric field and hence the electric stress. Since the electric field is still quasi-static
and there is no charge convection, the problem for Φ (1), Φ̃ (1) still reduces to Laplace’s
equation, subject to [[Et ]] = 0, [[βEn]] = 0 on the distorted shape. After these first-order
fields are found, the perturbations to the electric stress are used to solve the flow
problem subject to (9) and f 3 and f 4 on the distorted shape. Thus we use the
first-order deformation to correct the electric and flow fields. At the deformed drop
surface r = 1 + ω

(1)
2 P2, the normal and tangential unit vectors n, t are different from

the spherical coordinates r and θ . Let α denote the angle between n and r . Assume
the electric capillary number is small, i.e. |ω(1)

2 | � 1, therefore,

α ∼= tan(α) = ω
(1)
2

dP2

dθ
. (19)
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Then we can express the normal and tangential components of any vector at the
deformed drop surface in terms of their spherical components as:

An[r] = Ar [r] − ω
(1)
2

dP2

dθ
Aθ [r], (20)

At [r] = Aθ [r] + ω
(1)
2

dP2

dθ
Ar [r]. (21)

The bracket notation is as follows. An[r] (for example) denotes a quantity evaluated
on the actual (deformed) surface, r = 1 + ς(θ), while An[1] indicates the quantity
evaluated at the undeformed surface r = 1. Assuming Ar and Aθ can be expressed as
perturbation expansions in powers of ω

(1)
2 , we can expand (20) to the first order as:

An[r] = A(0)
r [r] + ω

(1)
2 A(1)

r [r] − ω
(1)
2

dP2

dθ

(
A

(0)
θ [r] + ω

(1)
2 A

(1)
θ [r]

)
. (22)

In (22), ω
(1)
2 appears both explicitly as the perturbation parameter and implicitly in

the argument of the drop surface r . By doing a Taylor series expansion about the
spherical drop surface at r = 1 in the usual way, and keeping only the linear terms in
ω

(1)
2 , we can rewrite (22) as:

An[r] = A(0)
r [1] + ω

(1)
2

(
A(1)

r [1] + P2

∂A(0)
r

∂r
[1] − A

(0)
θ [1]

dP2

dθ

)
, (23)

and in the same way, (21) can be expanded as:

At [r] = A
(0)
θ [1] + ω

(1)
2

(
A

(1)
θ [1] + P2

∂A
(0)
θ

∂r
[1] + A(0)

r [1]
dP2

dθ

)
. (24)

With (23) and (24), we are able to transform the boundary conditions at the deformed
drop surface to those on the spherical surface.

Equations (23, 24) make it clear that ω
(1)
2 is the small perturbation parameter,

and from (18), it is proportional to the electric capillary number CaE . Therefore,
we express the electric potential and the streamfunction up to the first order as:
ϕ =ϕ(0) + ω

(1)
2 ϕ(1), ψ = ψ (0) + ω

(1)
2 ψ (1). A tedious but straightforward calculation gives

the non-zero constants in the electric potentials (equation (3)) as:

b
(1)
1 =

6

5

(R − 1)2

(2R + 1)2
, b

(1)
3 = −9

5

R − 1

2R + 1
, ã

(1)
1 =

18

5

R(R − 1)

(2R + 1)2
, (25)

and the non-zero constants in the streamfunctions (equation (6)) as:

C
(1)
1 =

3M2 −M +8

10(M +1)2
, D

(1)
1 =−3(M2 −M +2)

10(M +1)2
, C

(1)
2 =

(
24(1−R)

5(2R +1)
+

12(1−M)

35(M +1)

)
VE,

D
(1)
2 =

(
−24(1 − R)

5(2R + 1)
− 8(4 + M)

35(M +1)

)
VE, C

(1)
3 = − 63M + 54

35(M +1)
, D

(1)
3 =

63M + 12

35(M + 1)
,

C
(1)
4 =

92

21
VE, D

(1)
4 = −164

21
VE;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)
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and

Ã
(1)
1 =

4 − 2M

5(M + 1)2
, B̃

(1)
1 =

3(M − 1)

5(M + 1)2
, Ã

(1)
2 =

(
24(1 − R)

5(2R + 1)
− 62M + 38

35(M + 1)

)
VE

B̃
(1)
2 =

(
−24(1 − R)

5(2R + 1)
+

42M + 18

35(M + 1)

)
VE, Ã

(1)
3 =

6

7(M + 1)
, B̃

(1)
3 = − 72

35(M + 1)

Ã
(1)
4 =

8

3
VE, B̃

(1)
4 = −128

21
VE.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(27)

As is well known (Leal 1992), the drag on an axisymmetric body is related to the
expansion of the streamfunction (equation (6)) by:

FD = 4πµUaC1,

= 4πµUa

(
− 3M + 2

2(M + 1)
+ �

(1)
2

3M2 − M + 8

10(M + 1)2

)
,

= 4πµUa

(
− 3M + 2

2(M + 1)
+

9(3M2 − M + 8)

40(M + 1)2(2R + 1)2

[
1
3
(1 + R2 − 2QR2)

+
R(1 − QR)(2 + 3M)

5(M + 1)

]
CaE

)
. (28)

The leading term in (28) is, of course, the Stokes drag on a spherical droplet, and is
the key result. Anticipating our experiments on settling drops, we balance the drag
with the net buoyant force and calculate the settling velocity. Equation (29a) gives the
resulting expression for the settling velocity normalized by the Hadamard–Rybczynski
velocity UH . Since in the perturbation method, the electric capillary number is assumed
to be small, (29b) is the binomial expansion of (29a) to the first order.

U

UH

=
1

1 − 9(3M2 − M + 8)

20(2R +1)2(M + 1)(3M + 2)

[
1
3
(1 + R2 − 2QR2) +

R(1 − QR)(2 + 3M)

5(M + 1)

]
CaE

,

(29a)

=1 +
9(3M2 − M + 8)

20(2R + 1)2(M + 1)(3M+2)

[
1
3
(1 + R2 − 2QR2) +

R(1 − QR)(2 + 3M)

5(M + 1)

]
CaE

+ O(Ca2
E), (29b)

where

UH =
2

9

ga2(ρ̃ − ρ)

µ

M + 1

M + 2
3

. (30)

Equation (29) is the main result in this section, which gives the correction to the settling
velocity for small distortions. Notice that in (29b), (3M2 − M + 8) > 0, so the sign of
the correction is determined by the term in square brackets, which is known as Taylor’s
discriminant. When Taylor’s discriminant is positive, the shape of the drop is prolate
and the drop falls faster; when negative, the shape is oblate and the drop falls slower.
This is reasonable since the correction to the drag is entirely due to shape distortion.
When distortion results in oblate shapes, the drag increases because of the increase
of cross-sectional area in the flow direction, and vice versa for prolate distortion.

3.2. Solution and results considering charge convection only

Spertell & Saville (1976) calculated the correction to the settling velocity and the
deformation due to weak charge convection. Although their results are correct, their
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(a) (b)

Figure 3. Schematic diagram of streamlines and charge distribution in (a) a neutrally
buoyant spherical drop; (b) a settling spherical drop.

analysis is complicated. They use γ /a to scale stress, and let both Ca and CaE be small
parameters in their perturbation method. Recognizing that the proper perturbation
parameter is implied by (11), i.e. the electric Reynolds number ReE , we can simplify
Spertell & Saville’s calculation.

Figure 3 shows a schematic diagram of the streamlines and charge distribution with
charge convection for a neutrally buoyant and settling spherical drop, respectively.
Without settling, the charge distribution, while influenced by convection, is still
antisymmetric with respect to the equatorial plane. So the corrected flow field is
antisymmetric and there is no drag. With settling, however, the asymmetric settling
speed coupled with charge convection results in a charge distribution that is no
longer antisymmetric about the equatorial plane; as a result, there is a net drag and
a corresponding change in settling speed.

Since the domain is spherical to leading order, the solution procedure is
straightforward. First, we evaluate the convective term ∇s · (qVs) from the zero-order
solutions and calculate the disturbed electric field. Then, the flow field is solved by
applying boundary conditions (9), f 3 and f 4 on a sphere, and the shape distortion
can be corrected by computing the total normal stress. For a spherical drop, charge
convection corrects the zero-order solution as ψ = ψ (0) + ReEψ (1) + O(Re2

E). (Note
that although we use the same notation, the first-order streamfunction ψ (1) we solve
for is different from the one in § 3.1.)

The electric and flow fields are now coupled through the effect of charge convection,
so the first-order electric field is corrected by the zero-order solutions by expanding
(11) in spherical coordinates:

[[
βE(1)

n

]]
= −ReE

1

r sin θ

∂
([[

κE(0)
n

]]
v

(0)
θ sin θ

)
∂θ

. (31)

We obtain the non-zero constants in (3) as:

ã(1)
n = b(1)

n

b
(1)
1 = −12R(1 − RQ)

5(2R + 1)2
VE, b

(1)
2 = − 3R(1 − RQ)

(2R + 1)(3R + 2)(M + 1)
,

b
(1)
3 = − 48R(1 − RQ)

5(2R + 1)(4R + 3)
VE.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(32)
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By applying boundary conditions (9), f 3 and f 4 on a sphere, we obtain the first-order
flow field as:

C(1)
n = Ã(1)

n = −D(1)
n = −B̃ (1)

n , (33a)

C
(1)
1 =

2(3R − RQ + 3)

3(3R + 2)(M + 1)
VE, (33b)

C
(1)
2 =

8

5

[
12(4R − RQ + 4)

7(4R + 3)
− 2R + 2RQ − 1

2R + 1

]
V 2

E, (33c)

C
(1)
3 = −12(3R + 4RQ − 2)

7(3R + 2)(M + 1)
VE, (33d)

C
(1)
4 = −320(4R + 6RQ − 3)

63(4R + 3)
V 2

E. (33e)

Since C1 is known, the correction to the settling velocity can be calculated as before,

U

UH

=
1

1 +
6R(1 − RQ)(3R − RQ + 3)

5(2R + 1)2(3R + 2)(3M + 2)(M + 1)
WReE

, (34a)

or since ReE is assumed small,

U

UH

= 1 − 6R(1 − RQ)(3R − RQ + 3)

5(2R + 1)2(3R + 2)(3M + 2)(M + 1)
WReE + O

(
Re2

E

)
. (34b)

Considering charge convection also makes further corrections to the first-order Taylor
deformation (equation (18)), which as is well-known, is proportional to aE2.

Substituting the first-order solutions (equations (32) and (33)) into (10), we calculate
the higher-order non-zero terms in (13) as:

ω
(2)
2 =

(
24(2M + 3)(4R − RQ + 4)

35(4R + 3)
+

16MR + 4R + 76MRQ + 64RQ + 22M + 28

15(2R + 1)

)

× ReEV 2
ECa, (35a)

ω
(2)
3 =

132MRQ − 6MR + 120RQ + 39M − 15R + 45

35(3R + 2)(M + 1)
ReEVECa, (35b)

ω
(2)
4 =

8(102MRQ − 16RM + 33M − 20R + 96RQ + 36)

189(4R + 3)
ReEV 2

ECa. (35c)

As mentioned, (34) and (35) are originally due to Spertell & Saville (1976). The effect
of charge convection coupled with the settling velocity causes the shape distortion
to be asymmetric. (Similar asymmetric shapes have been calculated for conducting
drops with a net surface charge in a field by Adornato & Brown (1983), who also
used perturbation methods for weak distortion. The origins of the asymmetry are
very different in the two problems, however. In Adornato & Brown, it is due to
a third-order coupling between a point source and a dipole, while in Spertell &
Saville (1976), it appears at second order for the reasons stated above.) In (35), ω

(2)
3

is antisymmetric with respect to the equatorial plane, while others are symmetric, so
the net shape distortion is asymmetric. Analysing the magnitude of the terms in (35)
in orders of the electric field strength, we find both ω

(2)
2 and ω

(2)
4 are proportional to

aE4, while ω
(2)
3 is proportional to E2, independent of a.

Following other investigators, we define the deformation D as the difference of the
lengths of the axes parallel and perpendicular to the electric field divided by their
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Figure 4. Effect of charge convection without settling: R = 100, Q =1.7, M = 0.03, W = 2.7,
Ca =0.1, ReE = 0.18, (a) streamlines, (b) magnified normalized velocity vectors, (c) charge
distribution, (d) tangential electric force. In (c) and (d) dashed lines are the zero-order
solutions.

sum: D > 0 or D < 0 for prolate and oblate deformations, respectively. From the
above, we have the full expression of the deformation as:

D =
3ω

(1)
2 +

(
3ω

(2)
2 + 5

4
ω

(2)
4

)
4 + ω

(1)
2 + ω

(2)
2 + 11

4
ω

(2)
4

. (36)

The term in brackets is due to the contribution of charge convection, and it is always
positive. This is consistent with Feng’s numerical results that charge convection always
enhances prolate deformation and reduces oblate deformation.

The antisymmetric shape distortion ω
(2)
3 cancels in the expression of D: therefore,

this measure of deformation is incomplete for asymmetric distortions. In order to
measure the antisymmetric distortion we define AD as the difference of the radii
parallel to the electric field divided by their sum. Equation (37) gives the expression:

AD =
r2 − r1

r2 + r1

=
ω

(2)
3

1 + ω
(1)
2 + ω

(2)
2 + ω

(2)
4

, (37)

and since ω
(2)
3 is proportional to E2, AD has the same E2 dependence.

To help explain the coupling of charge convection and settling, the flow fields
are plotted for neutrally buoyant and settling drops, respectively. Figure 4 shows
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Figure 5. Effect of charge convection with settling: R = 100, Q = 1.7, M = 0.03, W = 2.7,
Ca = 0.1, ReE = 0.18, (a) streamlines, (b) magnified normalized velocity vectors, (c) charge
distribution, (d) tangential electric force. In (c) and (d) dashed lines are the zero-order
solutions.

the theoretical results of the effects of charge convection for a suspended spherical
drop, with the choice of physical properties as R = 100, Q =1.7, M = 0.03, W =2.7,
Ca =0.1, ReE = 0.18. (For neutrally buoyant drops, the velocity scale is given by the
electro-hydrodynamic velocity VE , so the dimensionless number W is calculated from
(17).) Figure 4(c) shows the charge density distribution plotted vs. the azimuthal angle
θ . We see that although charge convection significantly alters the charge distribution,
it does not break the antisymmetry about the equatorial plane. As expected, the
flow field remains antisymmetric, and there is no net drag. The influence of charge
convection on the flow field can be easily observed from the plot of streamlines
(figure 4a) and the normalized velocity field (figure 4b): near the poles there are small
induced vortices. The plot of tangential electric force (figure 4d) shows sign reversals
of the electric force, which drive these small vortices. The magnitudes of the induced
vortices are small compared to the main vortices, which is obvious in figure 4(a, d).

Figure 5 gives corresponding results for a settling spherical drop with the same
physical properties as in figure 4. Figures 5(c) and 5(d) clearly show that the settling
coupled with charge convection breaks the antisymmetry of the charge distribution
and electric force about the equatorial plane, and hence the flow field is as shown in
figure 5(a). There are small vortices induced near the poles in a similar way to before,
but owing to the asymmetry of the stresses, the magnitudes of the induced vortices
at the top and bottom poles are different.
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3.3. Combining the two effects

We have calculated the corrections to the settling velocity due to shape distortion and
charge convection in two separate perturbation methods, which, at the lowest order,
can be combined linearly. In (29) and (34) we express the corrections in dimensionless
parameters. However, when performing experiments for fixed fluid pairs with all
properties fixed, we usually vary drop size a and electric field strength E. Therefore,
we write the results in dimensional form as:

Us = 1 + X1aE2 + X2E
2 + h.o.t, (38)

where

X1 =
εε0

γ

9(3M2 − M +8)

20(2R + 1)2(M +1)(3M + 2)

[
1
3
(1 + R2 − 2QR2) +

R(1 − QR)(2 + 3M)

5(M + 1)

]
, (39)

X2 =− (εε0)
2

µσ

6R(1 − RQ)(3R − RQ + 3)

5(2R + 1)2(3R + 2)(3M + 2)(M + 1)
, (40)

are dimensional quantities that depend only on fluid properties.
In (38), both terms are proportional to E2 because both corrections are driven by

the electric Maxwell stress which has the E2 dependence from (8). The term involving
X1 is due to the shape distortion, so it is also proportional to the drop radius a,
whereas that involving X2 does not depend on a because it is due to the effect of
charge convection. For most fluid pairs in the experimental work of Torza et al.
(1971) and Vizika & Saville (1992), the coefficients X1 and X2 have opposite signs,
which indicates the existence of critical drop size determining whether the settling
velocity is greater or less than UH . This critical size is given by:

ac =
40R(1 − RQ)(3R − RQ + 3)(M + 1)

(3R + 2)(3M2 − M + 8)[5(M + 1)(1 + R2 − 2R2Q) + 3(3M + 2)(R − R2Q)]

εγ

µσ
.

(41)

By substituting in the fluid parameters given by Torza et al. (1971), we find the typical
value of the critical drop size is small, in the range of 10−9 – 10−3 m.

As described in § 3.1, X1 always has the same sign as ω
(1)
2 . So if Taylor’s deformation

is dominant in the expression for the deformation (equation (36)), then although
charge convection will make a correction, we are still able to tell the sign of X1 from
whether the distortion is prolate or oblate.

4. Experiments
We carried out experiments to measure the deformation and settling velocity of

liquid drops. In this section the experimental set-up and procedure are described,
followed by results.

4.1. Apparatus

The experiments are performed in a 12 cm high acrylic cell equipped with two copper
electrodes 12 × 12 cm2 and 0.3 cm thick on the top and bottom. The drops were injected
using 100 and 200 µl pipettes. In order to guarantee the drop sizes are identical in a
series of experiments, only one drop is inserted at the beginning, and when the drop
falls near the bottom, the tank is tipped over to begin the next experiment. An electric
field is applied across the electrodes from a Spellman high-voltage power supply
(output range from 0 to 30 KV). The voltage is increased systematically in a series of
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Density Dielectric Conductivity Viscosity
Fluid (kgm−3) constant (S m−1) (kg ms−1)

PMM 1000 2.8 (0.25 ∼ 1)10−12 0.5
Castor oil 957–961 4.45 10−9 ∼ 10−11∗ 1.4

∗ The conductivity of castor oil is 10−9 S m−1, as given by Torza et al. (1971). Vizika & Saville
(1992) give the conductivity ratio of silicone oil to castor oil as approximately 10−2. Gelest gives the
conductivity of silicone oil as 10−13 S m−1. From Vizika & Saville’s ratio, we obtain another possible
conductivity of castor oil as 10−11 S m−1.

Table 1. Physical properties of the fluids.

experiments, and at the end, measurements are repeated at zero electric field to verify
the purity of the drop and lack of any surface contamination. Movies of the experi-
ments were recorded using a Canon XL1 CCD camera fitted with a Sigma MACRO
105 mm F2.8 EX lens, and drop sizes are determined from the calibrated still images.

We use castor oil from Fisher R© as the medium phase and phenylmethylsiloxane-
dimethylsiloxane (PMM) from Gelest as the drop phase. All the physical parameters
of PMM are obtained from Gelest, and the parameters of castor oil are estimated from
the data given by Fisher R© and other investigators. Castor oil easily absorbs water, so
its dielectric constant can vary significantly (D. A. Saville, personal communication
2005), and there is no agreed-upon value of its conductivity. Table 1 gives estimates
of all the physical parameters.

We chose this fluid pair mainly because the density difference is large (40 kgm−3),
so the settling velocity is large enough to overcome small errors in measurement.
Because the fluids are very viscous and the drop size is small (two drop sizes are
used, 2.8 mm and 3.3 mm), the Reynolds number is of the order of 10−3. Therefore,
the Stokes flow assumption is satisfied. We only let the drop move in the middle of
the tank to minimize wall effects. We estimate the error due to sidewalls to be about
8 % (from the results of Keh & Chen 2001), and from the error due to the bottom
wall to be about 5 % (from the results of Wacholder & Weihs 1972).

4.2. Experimental procedure

The CCD camera is focused on the middle 2 cm of the tank. After a drop is inserted,
the power supply is turned on. When the drop falls into view, the digital camcorder is
started in order to record the falling process. The voltage is increased systematically
in a series of experiments. The video images are saved in bitmap format, which
is a discretized matrix representation of the actual image. The deformation can be
determined as:

D =
l1 − l2

l1 + l2
, (42)

where l1 and l2 are the lengths of drop axes parallel and perpendicular to the applied
electrical field, respectively. The settling velocity is determined by

Us =
mp

t
. (43)

Here m is the number of pixels that the drop’s top boundary moves in two frames, p the
pixel size (∼ 50 µm), and t the time difference between the two frames. To measure the
symmetric deformation, we need only the lengths of drop axes; the measurement of the
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(d) (e) ( f )

Figure 6. Shape distortion of a 3.3 mm PMM drop in castor oil. (a) E = 0 KVm−1, (b) E =
41.6 KVm−1, (c) E = 66.7KVm−1, (d) E = 91.7KV m−1, (e) E = 125KV m−1, (f ) E =
150KV m−1.
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Figure 7. For the 3.3 mm drop, (a) deformation plotted vs. aE2; (b) the asymmetric
deformation plotted vs. E2. The dashed lines are linear fits to the data, and error bars
give the pixel error.

asymmetric deformation is more complicated because it relies on an accurate determ-
ination of the centre of the equivalent undistorted spherical drop. We discretize the
bitmap image horizontally to obtain the boundary of the drop as a function of the axial
position. By smoothing these discretized data into a continuous curve, we can diminish
the influence of pixel noise. The position of the drop axis parallel to the electric field
can be determined as the mean of the left and right boundaries, since the drop remains
axisymmetric. With the position of the axis and the smooth boundary, we calculate the
centre of mass by simple quadratures, giving the coordinate of the centre of the equi-
valent spherical drop. The asymmetric deformation is then computed simply from (37).

4.3. Experimental results and comparison with theory

Deformation

Figure 6 shows images of a 3.3 mm drop under several electric field strengths,
and figure 7 plots the deformation measurements for the same drop. In figure 7(a),
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Figure 8. Settling velocity measurement for 2.8 ‘o’ and 3.3 ‘*’mm drops plotted vs. E2,
(a) dimensional settling velocity measurements, (b) same velocity measurements but normalized
with the Hadamard–Rybczynski velocity. The dashed lines are linear fits to the data at low
fields.

each ‘∗’ represents one experimental measurement, and the error bars give the pixel
error. At low fields, the deformation is linear in aE2, as expected. The dashed line
is a linear interpolation of data except for those at the highest electric field which
obviously deviate from linearity and the interpolating slope is 1.91 × 10−9 mV−2.
Figure 7(b) plots the asymmetric deformation vs. E2, in which the ‘�’ represent the
average measurements. As expected, the asymmetric deformation is proportional to
E2. The dashed line is a linear interpolation of the average measurements, and the
interpolating slope is 2.3 × 10−12 V−2.

Settling velocity

Figure 8(a) shows settling velocity measurements for the 2.8 mm and 3.3 mm drops
represented by ‘�’ and ‘∗’, respectively. There is scatter in the data, but it is apparent
that the settling velocity decreases with an increase of electric field strength. For both
drop sizes, the slopes diminish at high fields, which may be due to a combination
of the higher-order terms in the binomial expansions of (29b) and (34b), and the
higher-order effects that the leading-order perturbation theory cannot capture.

We linearly interpolate the data at low fields and get the Hadamard–Rybczynski
velocity UH from the intersection at E = 0. The ratio of these velocities (1.31) compares
well with the square of the radius ratio (1.39). We rescale the settling velocity
measurements by UH as in figure 8(b), the dashed lines being a linear interpolation
of the data at lower fields.

Comparison with theory

The deformation is always prolate: from the discussion in § 3, X1 > 0, and for
most fluid pairs, X1 · X2 < 0, so we infer that X2 < 0. From figure 8(a), the settling
velocity decreases with the increasing electric field, so the X2 term, i.e. the charge
convection term, is dominant in the corrections (equation (38)). This indicates that
an increase in drop size will decrease the slope, which is seen in figure 8(b). As
already mentioned, the measurements of deformation D and asymmetric deformation
AD are proportional to E2 as expected. Therefore, all the experimental results are
in qualitative agreement with the theory; but the deformation calculated for small
charge convection alone cannot explain why the deformation at the highest field is
less deformed than linearity predicts, since the theory predicts that the higher-order
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Figure 9. Theoretical fit of data, (a) settling velocity; (b) shape distortion at E = 125 KVm−1;
(c) deformation D and (d) asymmetric deformation AD with properties σ = 2.4 × 10−12 S m−1,
µ= 1.4 kg ms−1, γ = 5 × 10−3 N m−1, ε = 8, R = 1.55, Q = 0.35, M = 0.357.

terms always increase the prolate deformation. Notice that we only calculate the
correction to the deformation due to charge convection; there are also higher-order
terms in shape distortion (Ajayi 1978) and some cross-terms from both of them. So
this discrepancy might also arise from these higher-order terms.

Quantitative comparison between the theory and experiment is made difficult
because of the lack of accurate properties for the fluids. When we evaluate the
theory for the accepted values of parameters in table 1, the theoretical results do not
make a close prediction: the deformation is predicted to be oblate and the settling
velocity is predicted to increase with electric field, which are obviously contrary to
the experimental results.

The quantitative comparison is very sensitive to the dielectric constant and
conductivity of the fluids. Knowing that castor oil easily absorbs water, we assume
the dielectric constant of castor oil can be higher than the reported value. Also PMM
is one kind of thermal silicone fluid, and its conductivity is sensitive to temperature,
i.e. the conductivity at 25 ◦C (table 1) is 100 times less than that at 50 ◦C. Finally,
there is no agreed value for the conductivity of castor oil. A reasonable choice of
parameters in which we vary both the dielectric constant and conductivity of the fluids,
σ = 2.4 × 10−12 Sm−1, µ =1.4 kg ms−1, γ = 5× 10−3 Nm−1, ε = 8, R = 1.55, Q =0.35,
M=0.357, gives the fit to the data shown in figure 9. All the symbols in figure 9 have
the same meaning as before, and the solid lines are the theoretical fits. This choice of
parameters can fit the deformation and settling velocity very well. When we include
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the higher-order terms in the power series expansion of settling velocity (equations
(29b) and (34b)), the theory can even fit the experimental measurements at higher
fields. As can be seen from figure 9(b), the shape distortion is asymmetric.

Besides this choice of properties, other combinations of physical parameters can
also fit the data. We note that comparison between the theory and experiment is
very sensitive to both dielectric constant and conductivity. A true comparison would
require independent accurate measurements of the electrical properties, something we
did not undertake for this study. However, from the qualitative comparison, we can
draw the conclusions that:

(i) there is an effect of charge convection on the settling speed, as predicted by
Spertell & Saville (1976);

(ii) the effect of shape distortion on settling speed is more important for larger
drops than for small drops;

(iii) charge convection with settling drops leads to asymmetric distortion.

5. Conclusion
The deformation and settling velocity of a translating leaky dielectric liquid drop

in a uniform electric field are investigated theoretically and experimentally at low
Reynolds number. Perturbation methods are employed for small shape distortion
(small CaE) and small charge convection (small ReE), respectively, and the settling
velocity is calculated by combining the corrections from the two contributions
linearly at the lowest order. The dimensional result for the settling velocity reads,
Us =UH (1 + X1aE2 + X2E

2), where UH is the Hadamard–Rybczynski velocity, X1 and
X2 are dimensional coefficients describing the effects of shape distortion and charge
convection, respectively. For most fluid pairs in the experimental work of Torza
et al. (1971) and Vizika & Saville (1992), the coefficients X1 and X2 have opposite
sign, which indicates the existence of critical drop size determining whether the settling
velocity is greater or less than UH . The shape distortion due to charge convection
has been calculated to second order. The expression of the linearized deformation
shows that charge convection will enhance prolate deformation and decrease oblate
deformation, which is consistent with the numerical results of Feng (1999). We also
find X1 is of the same sign as the Taylor deformation. So when Taylor’s deformation
is dominant and determines the sign of deformation, we have for prolate deformation
X1 > 0, and X1 < 0 for oblate deformation.

Experimental measurements of the deformation and settling velocity of PMM drops
in castor oil medium show qualitative agreement with the theory: the deformation D

and the asymmetric deformation AD are proportional to E2, and the change in the
settling speed is quadratic in E, and shows the correct trends with drop size. We show
it is possible to fit the data with reasonable choices for the physical parameters.

This work was supported by DOE, Office of Basic Energy Sciences, and by the
NASA Microgravity Fluid Mechanics Program. We thank Professor Dudley Saville
for encouraging us to do these experiments and for helpful comments.
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